论文标题

Memebot:迈向自动图像模因生成

memeBot: Towards Automatic Image Meme Generation

论文作者

Sadasivam, Aadhavan, Gunasekar, Kausic, Davulcu, Hasan, Yang, Yezhou

论文摘要

图像模因已成为人们通过社交媒体,博客和开放使者进行互动和交换想法的广泛工具。这项工作建议将自动图像模因的生成视为翻译过程,并进一步提出了一种端到最后的神经和概率方法,以使用Encoder-Decoder架构为任何给定句子生成基于图像的模因。对于给定的输入句子,通过组合模因模板图像和文本标题来生成图​​像模因,其中使用选择模块从一组流行的候选人中选择模因模板图像,并且模因字幕是由编码器decoder-decoder模型生成的。编码器用于映射选定的模因模板,然后将输入句子映射到模因嵌入中,并使用解码器来解码模因字幕中的模因字幕。生成的自然语言模因字幕在输入句子和选定的模因模板上进行条件。该模型了解模因字幕和模因模板图像之间的依赖项,并使用学习的依赖项生成新的模因。通过自动化和人类评估来评估生成的标题和生成模因的质量。一个实验旨在评估生成的模因可以从Twitter对话中表示推文。 Twitter数据上的实验显示了该模型在在线社交互动中为句子生成模因的功效。

Image memes have become a widespread tool used by people for interacting and exchanging ideas over social media, blogs, and open messengers. This work proposes to treat automatic image meme generation as a translation process, and further present an end to end neural and probabilistic approach to generate an image-based meme for any given sentence using an encoder-decoder architecture. For a given input sentence, an image meme is generated by combining a meme template image and a text caption where the meme template image is selected from a set of popular candidates using a selection module, and the meme caption is generated by an encoder-decoder model. An encoder is used to map the selected meme template and the input sentence into a meme embedding and a decoder is used to decode the meme caption from the meme embedding. The generated natural language meme caption is conditioned on the input sentence and the selected meme template. The model learns the dependencies between the meme captions and the meme template images and generates new memes using the learned dependencies. The quality of the generated captions and the generated memes is evaluated through both automated and human evaluation. An experiment is designed to score how well the generated memes can represent the tweets from Twitter conversations. Experiments on Twitter data show the efficacy of the model in generating memes for sentences in online social interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源