论文标题

针对基于对象的卫星图像时间序列数据的细心弱监督的土地覆盖映射和空间解释

Attentive Weakly Supervised land cover mapping for object-based satellite image time series data with spatial interpretation

论文作者

Ienco, Dino, Gbodjo, Yawogan Jean Eudes, Interdonato, Roberto, Gaetano, Raffaele

论文摘要

如今,现代地球观测系统不断收集大量卫星信息。获取高分辨率卫星图像时间序列(SITS)数据的前所未有的可能性(在同一地理区域上具有较高重新访问时间段的一系列图像)是为监视地球表面的不同方面的新机会,但与此同时,它正在提出新的挑战,以分析和利用如此庞大的图像和复杂图像数据的合适方法。与SITS分析相关的主要任务之一与土地覆盖映射有关,其中通过学习方法利用卫星数据来恢复地球表面状态又称相应的土地覆盖类别。由于操作的限制,收集的标签信息(在哪种机器学习策略中受过训练,通常受到限制,并在粗粒度时获得,从而进行不精确的粒度和弱知识,从而影响整个过程。为了应对此类问题,在基于对象的坐落覆盖映射的背景下,我们提出了一个新的深度学习框架,名为Tassel(专注于弱监督的卫星图像时间序列分类器),该框架能够智能利用由粗粒状标签提供的弱监督。此外,我们的框架还产生了一个额外的侧面信息,该信息支持模型可解释性,目的是使黑匣子灰色。这种侧面信息允许通过视觉检查将空间解释与模型决策相关联。

Nowadays, modern Earth Observation systems continuously collect massive amounts of satellite information. The unprecedented possibility to acquire high resolution Satellite Image Time Series (SITS) data (series of images with high revisit time period on the same geographical area) is opening new opportunities to monitor the different aspects of the Earth Surface but, at the same time, it is raising up new challenges in term of suitable methods to analyze and exploit such huge amount of rich and complex image data. One of the main task associated to SITS data analysis is related to land cover mapping where satellite data are exploited via learning methods to recover the Earth Surface status aka the corresponding land cover classes. Due to operational constraints, the collected label information, on which machine learning strategies are trained, is often limited in volume and obtained at coarse granularity carrying out inexact and weak knowledge that can affect the whole process. To cope with such issues, in the context of object-based SITS land cover mapping, we propose a new deep learning framework, named TASSEL (aTtentive weAkly Supervised Satellite image time sEries cLassifier), that is able to intelligently exploit the weak supervision provided by the coarse granularity labels. Furthermore, our framework also produces an additional side-information that supports the model interpretability with the aim to make the black box gray. Such side-information allows to associate spatial interpretation to the model decision via visual inspection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源