论文标题

ENT-DESC:实体描述通过探索知识图的生成

ENT-DESC: Entity Description Generation by Exploring Knowledge Graph

论文作者

Cheng, Liying, Wu, Dekun, Bing, Lidong, Zhang, Yan, Jie, Zhanming, Lu, Wei, Si, Luo

论文摘要

以前关于知识到文本生成的作品将输入几个RDF三元组或键值对传达了某些实体的知识以生成自然语言描述。现有的数据集,例如Wikibio,WebNLG和E2E,基本上在输入三重/对设置与其输出文本之间具有良好的对齐方式。但是,实际上,输入知识可能足够远,因为输出描述只能涵盖最重要的知识。在本文中,我们引入了一个大规模且具有挑战性的数据集,以促进对KG至文本中这种实际情况的研究。我们的数据集涉及从大知识图(kg)中检索各种主实体的丰富知识,这使得当前的图形到序列模型在生成描述时严重遭受了信息丢失和参数爆炸的问题。我们通过提出一个能够更全面地表示原始图表信息的多画结构来解决这些挑战。此外,我们还结合了学会提取丰富图形信息的聚合方法。广泛的实验证明了我们的模型体系结构的有效性。

Previous works on knowledge-to-text generation take as input a few RDF triples or key-value pairs conveying the knowledge of some entities to generate a natural language description. Existing datasets, such as WIKIBIO, WebNLG, and E2E, basically have a good alignment between an input triple/pair set and its output text. However, in practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge. In this paper, we introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text. Our dataset involves retrieving abundant knowledge of various types of main entities from a large knowledge graph (KG), which makes the current graph-to-sequence models severely suffer from the problems of information loss and parameter explosion while generating the descriptions. We address these challenges by proposing a multi-graph structure that is able to represent the original graph information more comprehensively. Furthermore, we also incorporate aggregation methods that learn to extract the rich graph information. Extensive experiments demonstrate the effectiveness of our model architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源