论文标题
关于无条件单位球的各向异性分数等级问题
The anisotropic fractional isoperimetric problem with respect to unconditional unit balls
论文作者
论文摘要
相对于cosotional等级不平等的最小化器相对于$ \ m \ mathbb {r}^n $中的凸件$ k $,每当$ k $严格凸出和无条件的情况下,都表现出与星体相同的。 从此,通过使用相对于恒星体的对称化来得出各向异性分数半米的Pólya-Szegö原理。
The minimizers of the anisotropic fractional isoperimetric inequality with respect to the convex body $K$ in $\mathbb{R}^n$ are shown to be equivalent to star bodies whenever $K$ is strictly convex and unconditional. From this a Pólya-Szegö principle for anisotropic fractional seminorms is derived by using symmetrization with respect to star bodies.