论文标题

统一函子演算与现实

Unitary Functor Calculus with Reality

论文作者

Taggart, Niall

论文摘要

我们本着正交演算的精神构建函子的演算,该精神旨在研究“具有现实的函子”,例如真实的分类太空函数,$ bu_ \ mathbb {r}( - )$。微积分产生了一个泰勒塔,其$ n $ then层是由频谱分类的,其动作为$ c_2 \ ltimes u(n)$。 我们进一步给出了模型分类考虑因素,在光谱之间产生了Quillen等价的曲折,并以$ C_2 \ ltimes u(n)$的作用以及输入函数类别上的模型结构,捕获了泰勒塔的$ n $ then层的同质理论。

We construct a calculus of functors in the spirit of orthogonal calculus, which is designed to study "functors with reality" such as the Real classifying space functor, $BU_\mathbb{R}(-)$. The calculus produces a Taylor tower, the $n$-th layer of which is classified by a spectrum with an action of $C_2 \ltimes U(n)$. We further give model categorical considerations, producing a zig-zag of Quillen equivalences between spectra with an action of $C_2 \ltimes U(n)$ and a model structure on the category of input functors which captures the homotopy theory of the $n$-th layer of the Taylor tower.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源