论文标题

PCA-SRGAN:面部超分辨率的增量正交投影歧视

PCA-SRGAN: Incremental Orthogonal Projection Discrimination for Face Super-resolution

论文作者

Dou, Hao, Chen, Chen, Hu, Xiyuan, Xuan, Zuxing, Hu, Zhisen, Peng, Silong

论文摘要

生成的对抗网络(GAN)已被用于面部超级分辨率,但它们很容易带来扭曲的面部细节,并且仍然在恢复现实的纹理方面仍然有弱点。为了进一步提高基于GAN的模型对超出分辨面部图像的性能,我们提出了PCA-SRGAN,该模型将注意脸部数据的PCA投影矩阵跨越正交投影空间中的累积歧视。通过将从结构到细节的主要组件预测喂入歧视者,歧视难度将大大缓解,并且可以增强发电机以重建更清晰的轮廓和更细的质感,从而有助于实现高感知和低失真。这种增量的正交投影歧视已确保了从粗到细的精确优化程序,并避免了对感知正则化的依赖。我们对Celeba和FFHQ面部数据集进行了实验。定性的视觉效果和定量评估表明,我们模型对相关工作的压倒性表现。

Generative Adversarial Networks (GAN) have been employed for face super resolution but they bring distorted facial details easily and still have weakness on recovering realistic texture. To further improve the performance of GAN based models on super-resolving face images, we propose PCA-SRGAN which pays attention to the cumulative discrimination in the orthogonal projection space spanned by PCA projection matrix of face data. By feeding the principal component projections ranging from structure to details into the discriminator, the discrimination difficulty will be greatly alleviated and the generator can be enhanced to reconstruct clearer contour and finer texture, helpful to achieve the high perception and low distortion eventually. This incremental orthogonal projection discrimination has ensured a precise optimization procedure from coarse to fine and avoids the dependence on the perceptual regularization. We conduct experiments on CelebA and FFHQ face datasets. The qualitative visual effect and quantitative evaluation have demonstrated the overwhelming performance of our model over related works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源