论文标题

在室温下,可调的铁磁性和热诱导的液化钨单层中的自旋翻转

Tunable Ferromagnetism and Thermally Induced Spin Flip in Vanadium-doped Tungsten Diselenide Monolayers at Room Temperature

论文作者

Pham, Yen Thi Hai, Liu, Mingzu, Jimenez, Valery Ortiz, Zhang, Fu, Kalappattil, Vijaysankar, Yu, Zhuohang, Wang, Ke, Williams, Teague, Terrones, Mauricio, Phan, Manh-Huong

论文摘要

过渡金属二核苷(TMDS)的出色光电和valleytronic特性触发了科学界的强烈研究工作。 TMDS中诱导远程铁磁(FM)的一种替代方法是引入磁化剂以形成稀磁半导体。在这些半导体中增强铁磁性不仅代表了基于现代TMD的Spintronics迈出的关键步骤,而且还可以探索新的和令人兴奋的维度驱动的磁性现象。为此,我们在室温下显示了可调的铁磁性,在V掺杂WSE2的单层中显示了热诱导的自旋翻转(TISF)。随着WSE2单层内钒浓度的增加,饱和磁化的增加增加,并且在〜4AT。%钒中最佳。 V型WSE2单层实现的最高兴奋剂/合金水平。 TIFF发生在〜175 K处,并且在升高室温的温度时会变得更加明显。我们证明,可以通过改变WSE2单层中的钒浓度来操纵TIFF。我们将TIFF归因于磁场和温度依赖性的逆转,这些磁场在基态以抗磁力耦合到v磁矩的磁力磁矩的最接近磁矩。最近的自旋密度功能理论计算完全支持了这一点。我们的发现为基于原子较薄的磁性半导体的新型Spintronic和Valleytronic纳米版本开发铺平了道路,并在这一迅速扩展的2D磁性研究领域中刺激了进一步的研究。

The outstanding optoelectronic and valleytronic properties of transition metal dichalcogenides (TMDs) have triggered intense research efforts by the scientific community. An alternative to induce long-range ferromagnetism (FM) in TMDs is by introducing magnetic dopants to form a dilute magnetic semiconductor. Enhancing ferromagnetism in these semiconductors not only represents a key step towards modern TMD-based spintronics, but also enables exploration of new and exciting dimensionality-driven magnetic phenomena. To this end, we show tunable ferromagnetism at room temperature and a thermally induced spin flip (TISF) in monolayers of V-doped WSe2. As vanadium concentrations increase within the WSe2 monolayers the saturation magnetization increases, and it is optimal at ~4at.% vanadium; the highest doping/alloying level ever achieved for V-doped WSe2 monolayers. The TISF occurs at ~175 K and becomes more pronounced upon increasing the temperature towards room temperature. We demonstrate that TISF can be manipulated by changing the vanadium concentration within the WSe2 monolayers. We attribute TISF to the magnetic field and temperature dependent flipping of the nearest W-site magnetic moments that are antiferromagnetically coupled to the V magnetic moments in the ground state. This is fully supported by a recent spin-polarized density functional theory calculation. Our findings pave the way for the development of novel spintronic and valleytronic nanodevices based on atomically thin magnetic semiconductors and stimulate further studies in this rapidly expanding research field of 2D magnetism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源