论文标题
对层次的双曲线和应用程序的应用程序的组合使用
A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups
论文作者
论文摘要
我们给出了一个简单的组合标准,就对双曲线简单复合物的作用而言,使组具有分层双曲线。我们将其应用于表明,dehn twists绘制班级组的商在层次上是双曲线的(在属2属中甚至相对双曲)。在剩余的有限假设下,我们构建了许多映射类组的非元素双曲线。使用这些商,我们减少了Reid和Bridson-Reid-Wilton的问题,内容涉及将课程组映射到特定双曲线群体的残留有限额。
We give a simple combinatorial criterion, in terms of an action on a hyperbolic simplicial complex, for a group to be hierarchically hyperbolic. We apply this to show that quotients of mapping class groups by large powers of Dehn twists are hierarchically hyperbolic (and even relatively hyperbolic in the genus 2 case). Under residual finiteness assumptions, we construct many non-elementary hyperbolic quotients of mapping class groups. Using these quotients, we reduce questions of Reid and Bridson-Reid-Wilton about finite quotients of mapping class groups to residual finiteness of specific hyperbolic groups.