论文标题

首先重置的优化

Optimization in First-Passage Resetting

论文作者

De Bruyne, B., Randon-Furling, J., Redner, S.

论文摘要

我们使用附加的特征研究经典扩散,即每次粒子达到指定的阈值时,扩散粒子都会重置为起点。在一个无限的域中,此过程是非平稳的,其概率分布具有丰富的特征。在有限的域中,我们定义了一个非平凡的优化,其中每当粒子重置并在粒子停留在复位点附近时获得奖励时,就会产生成本。我们得出了优化该系统净收益的条件,即奖励减去成本。

We investigate classic diffusion with the added feature that a diffusing particle is reset to its starting point each time the particle reaches a specified threshold. In an infinite domain, this process is non-stationary and its probability distribution exhibits rich features. In a finite domain, we define a non-trivial optimization in which a cost is incurred whenever the particle is reset and a reward is obtained while the particle stays near the reset point. We derive the condition to optimize the net gain in this system, namely, the reward minus the cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源