论文标题
光滑的品种家族的生育几何形状承认良好的最小模型
Birational geometry of smooth families of varieties admitting good minimal models
论文作者
论文摘要
在本文中,我们研究了具有良好模型的投射歧管家庭。在为具有典型奇异性的极化品种构造合适的模量函数后,我们表明,如果不是生物遗传的同时,此类家族的基础空间支持具有阳性kodaira尺寸的对数倍差异的子展览。因此,我们证明,在特殊的基础方案中,这种类型的家庭只能是同性恋的,因此,确认了Kebekus和Kovács的猜想。
In this paper we study families of projective manifolds with good minimal models. After constructing a suitable moduli functor for polarized varieties with canonical singularities, we show that, if not birationally isotrivial, the base spaces of such families support subsheaves of log-pluridifferentials with positive Kodaira dimension. Consequently we prove that, over special base schemes, families of this type can only be birationally isotrivial and, as a result, confirm a conjecture of Kebekus and Kovács.