论文标题

战略决策支持的自动编码器

Autoencoders for strategic decision support

论文作者

Verboven, Sam, Berrevoets, Jeroen, Wuytens, Chris, Baesens, Bart, Verbeke, Wouter

论文摘要

在大多数行政领域中,大多数战略决策都涉及正常的概念。但是,很少有数据驱动的工具支持战略决策。我们介绍并扩展使用自动编码器以提供具有战略性相关的颗粒反馈。第一个实验表明,专家在决策中不一致,强调了对战略决策支持的需求。此外,使用两个大型行业提供的人力资源数据集,根据排名准确性,与人类专家的协同作用以及维度级别的反馈来评估所提出的解决方案。使用(a)合成数据,(b)数据质量,(c)盲目专家验证以及(d)透明的专家评估的观点对此三点方案进行验证。我们的研究证实了人类决策的几个主要弱点,并强调了模型和人类之间协同作用的重要性。此外,无监督的学习,尤其是自动编码器是战略决策的宝贵工具。

In the majority of executive domains, a notion of normality is involved in most strategic decisions. However, few data-driven tools that support strategic decision-making are available. We introduce and extend the use of autoencoders to provide strategically relevant granular feedback. A first experiment indicates that experts are inconsistent in their decision making, highlighting the need for strategic decision support. Furthermore, using two large industry-provided human resources datasets, the proposed solution is evaluated in terms of ranking accuracy, synergy with human experts, and dimension-level feedback. This three-point scheme is validated using (a) synthetic data, (b) the perspective of data quality, (c) blind expert validation, and (d) transparent expert evaluation. Our study confirms several principal weaknesses of human decision-making and stresses the importance of synergy between a model and humans. Moreover, unsupervised learning and in particular the autoencoder are shown to be valuable tools for strategic decision-making.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源