论文标题

减少Qutrit系统不一致的Kraus操作数量

The reduction of the number of incoherent Kraus operations for qutrit systems

论文作者

Qiao, Jiahuan, Sun, Lingyun, Wang, Jing, Li, Ming, Shen, Shuqian, Li, Lei, Fei, Shaoming

论文摘要

量子相干性是可以在任何量子系统中出现的基本特性。根据克劳斯(Kraus)分解而定义的不一致的操作在国家转型中发挥了重要作用。 [A. Streltsov,S。Rana,P。Boes,J。Eisert,物理学。莱特牧师。 119。140402(2017)]。在这项工作中,我们表明,通过构建适当的统一矩阵,可以将单个量子的不一致的kraus算子数量从5减少到4。对于QUTRIT系统,我们进一步获得了32个不连贯的Kraus操作员,而在Sterltsov研究中的上限为39个Kraus操作员提供了。此外,我们将严格不一致的Kraus运算符的数量从15多个以上减少到13个以上。我们考虑了单个Qutrit系统中这两种操作的状态转换问题。

Quantum coherence is a fundamental property that can emerge within any quantum system. Incoherent operations, defined in terms of the Kraus decomposition, take an important role in state transformation. The maximum number of incoherent Kraus operators has been presented in [A. Streltsov, S. Rana, P. Boes, J. Eisert, Phys. Rev. Lett. 119. 140402 (2017)]. In this work, we show that the number of incoherent Kraus operators for a single qubit can be reduced from 5 to 4 by constructing a proper unitary matrix. For qutrit systems we further obtain 32 incoherent Kraus operators, while the upper bound in the research of Sterltsov gives 39 Kraus operators. Besides, we reduce the number of strictly incoherent Kraus operators from more than 15 to 13. And we consider the state transformation problem for these two types of operations in single qutrit systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源