论文标题

恶性入侵的尖锐移动边界模型

A sharp-front moving boundary model for malignant invasion

论文作者

El-Hachem, Maud, McCue, Scott W, Simpson, Matthew J

论文摘要

我们分析了一种新型的恶性侵袭数学模型,该模型采用了两相移动边界问题的形式,描述了恶性细胞侵入到背景组织(例如皮肤)中。两个种群中的细胞都经历了扩散的迁移和逻辑增殖。两个种群之间的界面根据两阶段的Stefan条件移动。与许多恶性侵袭的许多反应扩散模型不同,运动边界模型明确描述了癌症和周围组织之间尖锐前沿的运动,而无需引入退化非线性非线性扩散。数值模拟表明,该模型产生了非常有趣的行驶波解决方案,这些解决方案以速度$ c $移动,该模型支持恶性入侵和恶性静修,在这种情况下,波动波可以在正面或负$ x $方向上移动。与经过良好研究的Fisher-Kolmogorov和多孔式渔夫模型不同,行驶波动以最小的波速$ C \ ge C^*> 0 $移动,移动边界模型会导致以$ | c |的方式进入波动波解决方案。 <c^{**} $。我们在相平面中解释了这些行动波解决方案,并表明它们与经典的Fisher-Kolmogorov相位平面的几个特征相关联,这些特征通常被忽略为非物理。从数值上讲,我们表明,相位平面分析与完整的部分微分方程模型的长时间解决方案进行了很好的比较,并为行进波的形状提供了准确的扰动近似值。

We analyse a novel mathematical model of malignant invasion which takes the form of a two-phase moving boundary problem describing the invasion of a population of malignant cells into a population of background tissue, such as skin. Cells in both populations undergo diffusive migration and logistic proliferation. The interface between the two populations moves according to a two-phase Stefan condition. Unlike many reaction-diffusion models of malignant invasion, the moving boundary model explicitly describes the motion of the sharp front between the cancer and surrounding tissues without needing to introduce degenerate nonlinear diffusion. Numerical simulations suggest the model gives rise to very interesting travelling wave solutions that move with speed $c$, and the model supports both malignant invasion and malignant retreat, where the travelling wave can move in either the positive or negative $x$-directions. Unlike the well-studied Fisher-Kolmogorov and Porous-Fisher models where travelling waves move with a minimum wave speed $c \ge c^* > 0$, the moving boundary model leads to travelling wave solutions with $|c| < c^{**}$. We interpret these travelling wave solutions in the phase plane and show that they are associated with several features of the classical Fisher-Kolmogorov phase plane that are often disregarded as being nonphysical. We show, numerically, that the phase plane analysis compares well with long time solutions from the full partial differential equation model as well as providing accurate perturbation approximations for the shape of the travelling waves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源