论文标题

在双重选择性通道上的结构化分布式压缩通道估计

Structured Distributed Compressive Channel Estimation over Doubly Selective Channels

论文作者

Qin, Qibo, Gui, Lin, Gong, Bo, Ren, Xiang, Chen, Wen

论文摘要

对于在双重选择性(DS)通道上的正交频划分多路复用(OFDM)系统,需要大量的试点子载波来估计众多通道参数,从而导致较低的光谱效率。在本文中,通过利用实用无线通道的时间相关性,我们提出了一种高效的基于联合多符号通道估计方案的结构性分布式压缩感(SDC)。具体而言,通过使用复杂的指数基础扩展模型(CE-BEM)并利用多个OFDM符号内的延迟域中的稀疏度,我们转向估计估计的共同稀疏CE-BEM系数向量,而不是许多通道TAPS。然后,设计了多个OFDM符号内的稀疏试点模式,以获得无ICI的结构,并将通道估计问题转换为关节块SPARSE模型。接下来,提出了一种基于块的同时基于块的正交匹配追踪(BSOMP)算法,以准确地共同恢复系数向量。最后,为了减少CE-BEM建模误差,我们通过分段线性近似对已经估计的通道TAPS进行平滑处理。显示结果表明,提出的通道估计方案可以比常规方案实现更高的估计精度,尽管具有较少的PILOT子载波。

For an orthogonal frequency-division multiplexing (OFDM) system over a doubly selective (DS) channel, a large number of pilot subcarriers are needed to estimate the numerous channel parameters, resulting in low spectral efficiency. In this paper, by exploiting temporal correlation of practical wireless channels, we propose a highly efficient structured distributed compressive sensing (SDCS) based joint multi-symbol channel estimation scheme. Specifically, by using the complex exponential basis expansion model (CE-BEM) and exploiting the sparsity in the delay domain within multiple OFDM symbols, we turn to estimate jointly sparse CE-BEM coefficient vectors rather than numerous channel taps. Then a sparse pilot pattern within multiple OFDM symbols is designed to obtain an ICI-free structure and transform the channel estimation problem into a joint-block-sparse model. Next, a novel block-based simultaneous orthogonal matching pursuit (BSOMP) algorithm is proposed to jointly recover coefficient vectors accurately. Finally, to reduce the CE-BEM modeling error, we carry out smoothing treatments of already estimated channel taps via piecewise linear approximation.Simulation results demonstrate that the proposed channel estimation scheme can achieve higher estimation accuracy than conventional schemes, although with a smaller number of pilot subcarriers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源