论文标题
原型H-向量和混合Eulerian数字的对数洞穴
Log-concavity of matroid h-vectors and mixed Eulerian numbers
论文作者
论文摘要
对于任何矩阵$ m $,我们使用组合中的某些类的混合交点数量来计算Tutte多项式$ t_m(x,y)$。使用混合的Hodge-Riemann关系,我们推断出矩阵复合体的$ H $ vector的对数洞穴的加强,从而改善了Dawson的旧猜想。
For any matroid $M$, we compute the Tutte polynomial $T_M(x,y)$ using the mixed intersection numbers of certain classes in the combinatorial Chow ring $A^\bullet(M)$ arising from hypersimplices. Using the mixed Hodge-Riemann relations, we deduce a strengthening of the log-concavity of the $h$-vector of a matroid complex, improving on an old conjecture of Dawson.