论文标题

高级LIGO校准中系统误差的表征

Characterization of systematic error in Advanced LIGO calibration

论文作者

Sun, Ling, Goetz, Evan, Kissel, Jeffrey S., Betzwieser, Joseph, Karki, Sudarshan, Viets, Aaron, Wade, Madeline, Bhattacharjee, Dripta, Bossilkov, Vladimir, Covas, Pep B., Datrier, Laurence E. H., Gray, Rachel, Kandhasamy, Shivaraj, Lecoeuche, Yannick K., Mendell, Gregory, Mistry, Timesh, Payne, Ethan, Savage, Richard L., Weinstein, Alan J., Aston, Stuart, Buikema, Aaron, Cahillane, Craig, Driggers, Jenne C., Dwyer, Sheila E., Kumar, Rahul, Urban, Alexander

论文摘要

需要校准晚期激光干扰仪重力波动台内检测器的原始输出,以产生用于天体物理分析的无量纲应变的估计值。自第二次观察跑步以来,这两个探测器已升级,并完成了为期一年的第三次观察跑。理解,会计和/或补偿升级检测器的每个部分的复杂值响应,可提高估计的检测器对重力波的响应的总体准确性。我们描述了用于量化每个检测器响应的改进的理解和方法,并专门努力定义系统错误起作用的所有位置。我们使用探测器在第三次观察跑步的上半(六个月)中站立,以证明每个探测器如何识别系统误差如何影响估计的应变并限制其统计不确定性。在此时间段,我们估计最敏感的频段20-2000 Hz的系统误差和相关不确定性的上限为$ <7 \%$,并且相位的相位($ 68 \%$置信区间)。仅系统误差的幅度估计为$ <2 \%$的水平和$ <2 $ deg的阶段。

The raw outputs of the detectors within the Advanced Laser Interferometer Gravitational-Wave Observatory need to be calibrated in order to produce the estimate of the dimensionless strain used for astrophysical analyses. The two detectors have been upgraded since the second observing run and finished the year-long third observing run. Understanding, accounting, and/or compensating for the complex-valued response of each part of the upgraded detectors improves the overall accuracy of the estimated detector response to gravitational waves. We describe improved understanding and methods used to quantify the response of each detector, with a dedicated effort to define all places where systematic error plays a role. We use the detectors as they stand in the first half (six months) of the third observing run to demonstrate how each identified systematic error impacts the estimated strain and constrain the statistical uncertainty therein. For this time period, we estimate the upper limit on systematic error and associated uncertainty to be $< 7\%$ in magnitude and $< 4$ deg in phase ($68\%$ confidence interval) in the most sensitive frequency band 20-2000 Hz. The systematic error alone is estimated at levels of $< 2\%$ in magnitude and $< 2$ deg in phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源