论文标题

表征非交通性C* - 代数的交叉产物的痕迹

Characterizing traces on crossed products of noncommutative C*-algebras

论文作者

Ursu, Dan

论文摘要

我们对由Unital c*-ergebra和离散组组成的C*淋巴结系统的通用和还原产物进行了奇特状态的完整描述。特别是,我们还回答了何时在原始c* - 代数上与不变的曲折状态进行典范的培训的问题。这概括了离散组的唯一跟踪属性。在各种情况下,该分析大大简化了原始组的共轭类都是有限的,并且在其他情况下给出了先前已知的结果,例如,当原始的C*-Algebra是合理的时。我们还获得了与贝多斯和汤姆森文献中现有结果相矛盾的阿贝尔群体的结果和例子。具体而言,我们给出了有限维度的反例,并对Thomsen的结果进行了校正。

We give complete descriptions of the tracial states on both the universal and reduced crossed products of a C*-dynamical system consisting of a unital C*-algebra and a discrete group. In particular, we also answer the question of when the tracial states are in canonical bijection with the invariant tracial states on the original C*-algebra. This generalizes the unique trace property for discrete groups. The analysis simplifies greatly in various cases, for example when the conjugacy classes of the original group are all finite, and in other cases gives previously known results, for example when the original C*-algebra is commutative. We also obtain results and examples in the case of abelian groups that contradict existing results in the literature of Bédos and Thomsen. Specifically, we give a finite-dimensional counterexample, and provide a correction to the result of Thomsen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源