论文标题
Swarmlab:MATLAB无人机群模拟器
SwarmLab: a Matlab Drone Swarm Simulator
论文作者
论文摘要
在用于无人机群模拟的可用解决方案中,我们在模拟框架中确定了一个差距,这些差距可以轻松算法原型制作,调整,调试和性能分析,并且不需要用户与多种编程语言交互。我们提出了SwarmLab,这是一种完全用MATLAB编写的软件,旨在创建标准化过程和指标,以量化群体算法的性能和鲁棒性,尤其是它的重点是无人机。我们通过比较两种最先进的算法来展示Swarmlab的功能,以在混乱的环境,Olfati-Saber's和Vasarhelyi中导航空中群。我们分析了飞行过程中距离距离和试剂速度的可变性。我们还研究了一些呈现的绩效指标,即订单,国际和外部安全性,工会和连接性。尽管Olfati-Saber的方法会导致障碍物场更快地穿越,但Vasarhelyi的方法使代理商可以无振荡而飞行更光滑的轨迹。我们认为,SwarmLab与生物学和机器人研究社区以及教育都有关系,因为它允许快速开发算法开发,自动收集模拟数据,系统分析具有从艺术状态继承的性能指标的蜂群行为。
Among the available solutions for drone swarm simulations, we identified a gap in simulation frameworks that allow easy algorithms prototyping, tuning, debugging and performance analysis, and do not require the user to interface with multiple programming languages. We present SwarmLab, a software entirely written in Matlab, that aims at the creation of standardized processes and metrics to quantify the performance and robustness of swarm algorithms, and in particular, it focuses on drones. We showcase the functionalities of SwarmLab by comparing two state-of-the-art algorithms for the navigation of aerial swarms in cluttered environments, Olfati-Saber's and Vasarhelyi's. We analyze the variability of the inter-agent distances and agents' speeds during flight. We also study some of the performance metrics presented, i.e. order, inter and extra-agent safety, union, and connectivity. While Olfati-Saber's approach results in a faster crossing of the obstacle field, Vasarhelyi's approach allows the agents to fly smoother trajectories, without oscillations. We believe that SwarmLab is relevant for both the biological and robotics research communities, and for education, since it allows fast algorithm development, the automatic collection of simulated data, the systematic analysis of swarming behaviors with performance metrics inherited from the state of the art.