论文标题
在3D中用于多对象搜索的多分辨率POMDP计划
Multi-Resolution POMDP Planning for Multi-Object Search in 3D
论文作者
论文摘要
在家庭中运行的机器人必须在架子,桌子和橱柜下找到物体。在这种环境中,在应对有限的视野和搜索多个对象的复杂性时,在3D尺度上有效搜索至关重要。对象搜索的原则方法经常使用可观察到的马尔可夫决策过程(POMDP)作为计算搜索策略的基础框架,但在2D中限制了搜索空间。在本文中,我们提出了一个POMDP公式,用于在带有球形视野的3D区域中的多对象搜索。为了有效地解决此POMDP,我们提出了一种基于在线蒙特卡洛树搜索的多分辨率计划算法。在这种方法中,我们设计了一种基于OCTREE的新型信念表示,以捕获不同分辨率水平的目标对象的不确定性,然后在较低的分辨率下得出抽象的POMDP,其状态和观察空间较小。在模拟的3D域中的评估表明,与一组基线相比,我们的方法在相同的计算要求下更有效,成功地发现对象,并且在较大实例中没有分辨率层次结构。我们在移动机器人上演示了我们的方法,以找到两个100m $^2 \ times 2 $ m区域的对象,通过移动其底座并驱动其躯干。
Robots operating in households must find objects on shelves, under tables, and in cupboards. In such environments, it is crucial to search efficiently at 3D scale while coping with limited field of view and the complexity of searching for multiple objects. Principled approaches to object search frequently use Partially Observable Markov Decision Process (POMDP) as the underlying framework for computing search strategies, but constrain the search space in 2D. In this paper, we present a POMDP formulation for multi-object search in a 3D region with a frustum-shaped field-of-view. To efficiently solve this POMDP, we propose a multi-resolution planning algorithm based on online Monte-Carlo tree search. In this approach, we design a novel octree-based belief representation to capture uncertainty of the target objects at different resolution levels, then derive abstract POMDPs at lower resolutions with dramatically smaller state and observation spaces. Evaluation in a simulated 3D domain shows that our approach finds objects more efficiently and successfully compared to a set of baselines without resolution hierarchy in larger instances under the same computational requirement. We demonstrate our approach on a mobile robot to find objects placed at different heights in two 10m$^2 \times 2$m regions by moving its base and actuating its torso.