论文标题

基于动作功能的多电子系统的基态

Ground state of many-electron systems based on the action function

论文作者

Fulde, Peter

论文摘要

相互作用电子系统的Hilbert空间随着电子数量$ n $的指数增长。这将基于schrödinger方程解决方案的$ψ$的概念限制为$ n \ leq n_0 $,$ n_0 \ simeq 10^3 $ \ cite {kohn1999}。有人认为,这个指数壁问题(EWP)与包含的信息越来越多,例如在系统的地面及其波函数相关。当基态的表征基于操作函数$ r $而不是基于Schödinger方程的解决方案$ψ$时,可以避免EWP和信息的冗余。两者都是通过对数相关的,即$ r = -i \ hbar \lnψ$。通过使用累积剂使与对数合作成为可能。它指出了周期固体的电子结构计算的方式可能使用此概念。

The Hilbert space for an interacting electron system increases exponentially with electron number $N$. This limits the concept of wavefunctions $ψ$ based on solutions of the Schrödinger equation to $N \leq N_0$ with $N_0 \simeq 10^3$ \cite{Kohn1999}. It is argued that this exponential wall problem (EWP) is connected with an increasing redundance of information contained, e.g., in the ground-state of the system and it's wavefunction. The EWP as well as redundance of information are avoided when the characterization of the ground state is based on the action function $R$ rather than on the solutions $ψ$ of the Schödinger equation. Both are related through a logarithm, i.e., $R = -i \hbar \ ln ψ$. Working with the logarithm is made possible by the use of cumulants. It is pointed out the way electronic structure calculations for periodic solids may use this concept.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源