论文标题
高斯不变措施和2D原始方程的固定解决方案
Gaussian invariant measures and stationary solutions of 2D Primitive Equations
论文作者
论文摘要
我们引入了由由加性高斯噪声驱动的二维原始方程正式保存的高斯度量。在这样的量度下,所考虑的随机方程是单数的:我们提出了基于Gubinelli和Jara在\ cite {guja13}方程式中的技术中开发的技术的解决方案理论。
We introduce a Gaussian measure formally preserved by the 2-dimensional Primitive Equations driven by additive Gaussian noise. Under such measure the stochastic equations under consideration are singular: we propose a solution theory based on the techniques developed by Gubinelli and Jara in \cite{GuJa13} for a hyperviscous version of the equations.