论文标题
基于适体的治疗药物监测的样品和持有CMOS电化学传感器的设计和分析
Design and Analysis of a Sample-and-Hold CMOS Electrochemical Sensor for Aptamer-based Therapeutic Drug Monitoring
论文作者
论文摘要
在本文中,我们介绍了使用结构切换适体测量治疗药物浓度的电化学电路的设计和分析。适体是单链核酸,其序列被选为对分子靶标的高亲和力和特异性,并在结合时改变其构象。当该特性与氧化还原报告基因和电化学检测相结合时,可实现无试剂的生物传感,并具有亚分钟的时间分辨率,用于体内治疗药物监测。具体而言,我们设计了一个基于计时计的电化学电路,该电路测量了在适体远端结合的甲基蓝色报告基因动力学的直接变化(ET)动力学。为了克服高频噪声放大问题,当与大尺寸(> 0.25 mm2)植入电极接口时,我们提出了一种样品和含量(s/h)电路技术,其中在记录氧化还原电流时,将所需的电极电位保存在无噪声的无能力上。这允许断开反馈放大器的连接,以避免其噪声注入,同时减少总功耗。在65 nm CMOS中实现的原型电路显示了一个不敏感的输入引用噪声(IRN)电流,为15.2 PARMS在2.5 kHz滤波带宽处。在人类全血样品中测试,从不同卡纳米霉素浓度下的氧化还原标记的氨基糖苷适体的ET动力学变化是从记录的电流波形中测量的。通过使用主成分分析(PCA)来补偿采样错误,以0.22兆瓦的功率消耗达到1-SEC采集以下3.1 UM的检测限(SNR = 1)。
In this paper, we present the design and the analysis of an electrochemical circuit for measuring the concentrations of therapeutic drugs using structure-switching aptamers. Aptamers are single-stranded nucleic acids, whose sequence is selected to exhibit high affinity and specificity toward a molecular target, and change its conformation upon binding. This property, when coupled with a redox reporter and electrochemical detection, enables reagent-free biosensing with a sub-minute temporal resolution for in vivo therapeutic drug monitoring. Specifically, we design a chronoamperometry-based electrochemical circuit that measures the direct changes in the electron transfer (ET) kinetics of a methylene blue reporter conjugated at the distal-end of the aptamer. To overcome the high-frequency noise amplification issue when interfacing with a large-size (> 0.25 mm2) implantable electrode, we present a sample-and-hold (S/H) circuit technique in which the desired electrode potentials are held onto noiseless capacitors during the recording of the redox currents. This allows disconnecting the feedback amplifiers to avoid its noise injection while reducing the total power consumption. A prototype circuit implemented in 65-nm CMOS demonstrates a cell-capacitance-insensitive input-referred noise (IRN) current of 15.2 pArms at a 2.5-kHz filtering bandwidth. Tested in human whole blood samples, changes in the ET kinetics from the redox-labeled aminoglycoside aptamers at different kanamycin concentrations are measured from the recorded current waveforms. By employing principal component analysis (PCA) to compensate for the sampling errors, a detection limit (SNR = 1) of 3.1 uM under 1-sec acquisition is achieved at 0.22-mW power consumption.