论文标题
球体的局部光谱外观演算,并应用于浅水方程
A Local Spectral Exterior Calculus for the Sphere and Application to the Shallow Water Equations
论文作者
论文摘要
我们介绍了$ψ\ mathrm {ec} $,这是一种局部光谱外部微积分,用于两杆$ s^2 $。 $ψ\ mathrm {ec} $提供了由球形差异$ r $ - form小波形成的$ s^2 $上的卡坦的外部微积分。这些在空间和频率上均已定位,并提供(Stevenson)均型Sobolev Spaces $ \ dot {h}^{ - r+1}(ω_v^{r},s^2)$ dinialial $ r $ - forms。同时,它们满足了外部演算的重要特性,例如De Rahm复合物和Hodge-Helmholtz分解。通过此,$ψ\ mathrm {ec} $是针对结构保存的离散化量身定制的,可以适应具有不同规律性的解决方案。 $ψ\ mathrm {ec} $的构建基于我们通过引入可扩展的再现内核帧而获得的新型球形小波框架。这些将可扩展的帧扩展到加权采样扩展,并为二次规则提供了替代标准的规则,以替代一号型号的尺度划线局部波浪。我们使用旋转浅水方程来验证$ψ\ mathrm {ec} $的实用性。我们的数值结果表明,基于方程式的基于$ψ\ mathrm {ec} $的离散化具有与光谱方法相当的精度,同时使用了在空间和频率中良好的表示形式。
We introduce $Ψ\mathrm{ec}$, a local spectral exterior calculus for the two-sphere $S^2$. $Ψ\mathrm{ec}$ provides a discretization of Cartan's exterior calculus on $S^2$ formed by spherical differential $r$-form wavelets. These are well localized in space and frequency and provide (Stevenson) frames for the homogeneous Sobolev spaces $\dot{H}^{-r+1}( Ω_ν^{r} , S^2 )$ of differential $r$-forms. At the same time, they satisfy important properties of the exterior calculus, such as the de Rahm complex and the Hodge-Helmholtz decomposition. Through this, $Ψ\mathrm{ec}$ is tailored towards structure preserving discretizations that can adapt to solutions with varying regularity. The construction of $Ψ\mathrm{ec}$ is based on a novel spherical wavelet frame for $L_2(S^2)$ that we obtain by introducing scalable reproducing kernel frames. These extend scalable frames to weighted sampling expansions and provide an alternative to quadrature rules for the discretization of needlet-like scale-discrete wavelets. We verify the practicality of $Ψ\mathrm{ec}$ for numerical computations using the rotating shallow water equations. Our numerical results demonstrate that a $Ψ\mathrm{ec}$-based discretization of the equations attains accuracy comparable to those of spectral methods while using a representation that is well localized in space and frequency.