论文标题
宇宙学模型中的马蹄铁和不变的摩托车,耦合场和非零曲率
Horseshoes and invariant tori in cosmological models with a coupled field and non-zero curvature
论文作者
论文摘要
本文研究了一个源自弗里德曼 - 莱玛·罗伯逊 - 罗伯逊步行者的空间时间的汉密尔顿系统家族的动力学,并带有耦合场和非零曲率。在四种不同的情况下,Maciejewski,Przybylska,Stachowiak&Szydowski先前考虑过,证明与不变的子序列和连接分裂存在同型连接。这些结果暗示着独立于哈密顿式的真实积分的不存在。
This paper studies the dynamics of a family of hamiltonian systems that originate from Friedman-Lemaître-Robertson-Walker space-times with a coupled field and non-zero curvature. In four distinct cases, previously considered by Maciejewski, Przybylska, Stachowiak & Szydowski, it is shown that there are homoclinic connections to invariant submanifolds and the connections split. These results imply the non-existence of a real-analytic integral independent of the hamiltonian.