论文标题
Deepore:深度学习工作流程,用于快速,全面的多孔材料表征
DeePore: a deep learning workflow for rapid and comprehensive characterization of porous materials
论文作者
论文摘要
Deepore是一个深度学习的工作流程,可快速估算基于二进制微型摄影图像的广泛多孔材料特性。通过结合天然发生的多孔纹理,我们生成了17700个半真实的3-D微型结构的多孔地质材料,大小为256^3素,每个样品的30个物理特性是使用相应孔网络模型上的物理模拟计算的。接下来,根据数据集对设计的馈电卷积神经网络(CNN)进行训练,以估算多孔材料的几种形态,液压,电气和机械特性,以一秒钟的一小部分。为了微调CNN设计,我们测试了9种不同的训练场景,并选择了1418个测试样品的平均测定系数(R^2)等于0.885的最高平均测定系数(R^2)。此外,已经使用所提出的方法测试了3个独立的合成图像以及3个现实的断层扫描图像,并将结果分别与孔网络建模和实验数据进行了比较。与实验数据相比,经过测试的绝对渗透率相对误差约为13%,考虑到直接数值仿真方法的准确性,例如晶格玻尔兹曼(Boltzmann)和有限体积。由于图像无尺寸的方法,工作流与图像的任何物理大小都兼容,并且可以通过平均为扫描整个几何形状的滑动窗口的模型输出来表征大型3-D图像。
DeePore is a deep learning workflow for rapid estimation of a wide range of porous material properties based on the binarized micro-tomography images. By combining naturally occurring porous textures we generated 17700 semi-real 3-D micro-structures of porous geo-materials with size of 256^3 voxels and 30 physical properties of each sample are calculated using physical simulations on the corresponding pore network models. Next, a designed feed-forward convolutional neural network (CNN) is trained based on the dataset to estimate several morphological, hydraulic, electrical, and mechanical characteristics of the porous material in a fraction of a second. In order to fine-tune the CNN design, we tested 9 different training scenarios and selected the one with the highest average coefficient of determination (R^2) equal to 0.885 for 1418 testing samples. Additionally, 3 independent synthetic images as well as 3 realistic tomography images have been tested using the proposed method and results are compared with pore network modelling and experimental data, respectively. Tested absolute permeabilities had around 13 % relative error compared to the experimental data which is noticeable considering the accuracy of the direct numerical simulation methods such as Lattice Boltzmann and Finite Volume. The workflow is compatible with any physical size of the images due to its dimensionless approach and can be used to characterize large-scale 3-D images by averaging the model outputs for a sliding window that scans the whole geometry.