论文标题

从具有深度潜在高斯流程动力学的图像进行计划

Planning from Images with Deep Latent Gaussian Process Dynamics

论文作者

Bosch, Nathanael, Achterhold, Jan, Leal-Taixé, Laura, Stückler, Jörg

论文摘要

计划是控制已知环境动态问题的强大方法。在未知环境中,代理需要学习系统动态模型以使计划适用。当仅通过图像间接观察到基础状态时,这尤其具有挑战性。我们建议学习一个深层潜在的高斯过程动力学(DLGPD)模型,该模型从与视觉观测的环境相互作用中学习了低维系统动力学。该方法使用神经网络从观察结果中渗透潜在的状态表示,并通过高斯过程中学习的潜在空间中的系统动力学进行建模。模型的所有部分都可以通过优化图像空间中过渡的可能性的下限来共同训练。我们在使用学习动力学模型的同时评估了摆动任务的建议方法,以便在潜在空间中进行计划以解决控制问题。我们还证明,我们的方法可以快速使受过训练的代理适应系统动力学的变化,从少量推出。我们将我们的方法与最先进的纯学习方法进行了比较,并证明了将高斯流程与深度学习相结合的数据效率和转移学习的优势。

Planning is a powerful approach to control problems with known environment dynamics. In unknown environments the agent needs to learn a model of the system dynamics to make planning applicable. This is particularly challenging when the underlying states are only indirectly observable through images. We propose to learn a deep latent Gaussian process dynamics (DLGPD) model that learns low-dimensional system dynamics from environment interactions with visual observations. The method infers latent state representations from observations using neural networks and models the system dynamics in the learned latent space with Gaussian processes. All parts of the model can be trained jointly by optimizing a lower bound on the likelihood of transitions in image space. We evaluate the proposed approach on the pendulum swing-up task while using the learned dynamics model for planning in latent space in order to solve the control problem. We also demonstrate that our method can quickly adapt a trained agent to changes in the system dynamics from just a few rollouts. We compare our approach to a state-of-the-art purely deep learning based method and demonstrate the advantages of combining Gaussian processes with deep learning for data efficiency and transfer learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源