论文标题

二次Hecke $ l $ formuli的低洼零的一个级别密度

One level density of low-lying zeros of quadratic Hecke $L$-functions to prime moduli

论文作者

Gao, Peng, Zhao, Liangyi

论文摘要

在本文中,我们研究了在普遍的Riemann假设(GRH)和比率构想下,在高斯领域的二次Hecke $ l $ f $ l $ for to Prime Moduli的低洼零的一个级别密度和高斯的构造。作为推论,我们推断出这个家庭成员中至少$ 75 \%的成员不会在GRH下的中央点消失。

In this paper, we study the one level density of low-lying zeros of a family of quadratic Hecke $L$-functions to prime moduli over the Gaussian field under the generalized Riemann hypothesis (GRH) and the ratios conjecture. As a corollary, we deduce that at least $75 \%$ of the members of this family do not vanish at the central point under GRH.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源