论文标题
二次Hecke $ l $ formuli的低洼零的一个级别密度
One level density of low-lying zeros of quadratic Hecke $L$-functions to prime moduli
论文作者
论文摘要
在本文中,我们研究了在普遍的Riemann假设(GRH)和比率构想下,在高斯领域的二次Hecke $ l $ f $ l $ for to Prime Moduli的低洼零的一个级别密度和高斯的构造。作为推论,我们推断出这个家庭成员中至少$ 75 \%的成员不会在GRH下的中央点消失。
In this paper, we study the one level density of low-lying zeros of a family of quadratic Hecke $L$-functions to prime moduli over the Gaussian field under the generalized Riemann hypothesis (GRH) and the ratios conjecture. As a corollary, we deduce that at least $75 \%$ of the members of this family do not vanish at the central point under GRH.