论文标题

深层生成模型实时模拟2D患者特定的超声图像

Deep Generative Models to Simulate 2D Patient-Specific Ultrasound Images in Real Time

论文作者

Magnetti, Cesare, Zimmer, Veronika, Ghavami, Nooshin, Skelton, Emily, Matthew, Jacqueline, Lloyd, Karen, Hajnal, Jo, Schnabel, Julia A., Gomez, Alberto

论文摘要

我们提出了一种计算方法,用于对2D超声(US)图像的实时,特定于患者的模拟。该方法使用大量跟踪的超声图像来学习一个函数,该功能将传感器的位置和方向映射到超声图像。这是迈向现实的患者模拟的第一步,可以改善对复杂病例的培训和回顾性检查。我们的模型可以在4ms以下(在实时约束中)中模拟2D图像,并产生模拟图像,以保留真实超声图像的内容(解剖结构和人工制品)。

We present a computational method for real-time, patient-specific simulation of 2D ultrasound (US) images. The method uses a large number of tracked ultrasound images to learn a function that maps position and orientation of the transducer to ultrasound images. This is a first step towards realistic patient-specific simulations that will enable improved training and retrospective examination of complex cases. Our models can simulate a 2D image in under 4ms (well within real-time constraints), and produce simulated images that preserve the content (anatomical structures and artefacts) of real ultrasound images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源