论文标题

泰勒系统的符号神经网络用于哈密顿系统

Symplectic Neural Networks in Taylor Series Form for Hamiltonian Systems

论文作者

Tong, Yunjin, Xiong, Shiying, He, Xingzhe, Pan, Guanghan, Zhu, Bo

论文摘要

我们提出了一种有效且轻巧的学习算法,象征性泰勒神经网络(Taylor-Nets),以基于稀疏的短期观察结果进行复杂的汉密尔顿动态系统的连续,长期预测。我们算法的核心是一种新型的神经网络结构,由两个子网络组成。两者都以用对称结构设计的泰勒级数膨胀形式嵌入。我们基础设施支撑的关键机制是泰勒系列膨胀的强烈表达和特殊的对称特性,它们自然地适应了哈密顿级梯度相对于广义坐标的数值拟合过程,并保留其符号结构。我们进一步将与神经ODES框架结合使用的四阶符号积分器与我们的Taylor-Net架构一起学习,以学习目标系统的连续时间演变,同时保留其符号结构。我们证明了我们的泰勒网络在预测广泛的哈密顿动态系统方面的功效,包括摆在摆,Lotka-volterra,Kepler和Hénon-Heiles-Heiles Systems。我们的模型通过在预测准确性,收敛速率和鲁棒性方面胜过以前的方法,表现出独特的计算优点,尽管使用了极小的训练数据,但训练时间很小(比预测期短的6000倍),小样本尺寸,没有中间数据来培训网络。

We propose an effective and lightweight learning algorithm, Symplectic Taylor Neural Networks (Taylor-nets), to conduct continuous, long-term predictions of a complex Hamiltonian dynamic system based on sparse, short-term observations. At the heart of our algorithm is a novel neural network architecture consisting of two sub-networks. Both are embedded with terms in the form of Taylor series expansion designed with symmetric structure. The key mechanism underpinning our infrastructure is the strong expressiveness and special symmetric property of the Taylor series expansion, which naturally accommodate the numerical fitting process of the gradients of the Hamiltonian with respect to the generalized coordinates as well as preserve its symplectic structure. We further incorporate a fourth-order symplectic integrator in conjunction with neural ODEs' framework into our Taylor-net architecture to learn the continuous-time evolution of the target systems while simultaneously preserving their symplectic structures. We demonstrated the efficacy of our Taylor-net in predicting a broad spectrum of Hamiltonian dynamic systems, including the pendulum, the Lotka--Volterra, the Kepler, and the Hénon--Heiles systems. Our model exhibits unique computational merits by outperforming previous methods to a great extent regarding the prediction accuracy, the convergence rate, and the robustness despite using extremely small training data with a short training period (6000 times shorter than the predicting period), small sample sizes, and no intermediate data to train the networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源