论文标题

用于大规模MIMO IoT网络的节点分组的光信号传导方法

A Light Signalling Approach to Node Grouping for Massive MIMO IoT Networks

论文作者

Fitzgerald, Emma, Pióro, Michał, Tataria, Harsh, Callebaut, Gilles, Gunnarsson, Sara, Van der Perre, Liesbet

论文摘要

Massive Mimo是连接大量能量约束节点的领先技术,因为它提供了广泛的空间多路复用和大型阵列增益。一个挑战在于将许多节点划分为可以同时交流的组,从而将相互干扰最小化。我们在这里提出了不需要全信道状态信息的节点分区策略,而是基于节点各自的方向通道属性。在我们考虑的情况下,这些通常的时间常数远大于通道的连贯时间。我们根据方向通道属性为分区用户开发了最佳和近似算法,并通过数值进行了评估。我们的结果表明,尽管使用完整的通道知识的参考方法,但两种算法尽管仅使用了这些定向通道属性,但在任何用户的最小信噪比加上噪声比率方面都达到了相似的性能。特别是,我们证明应避免使用具有相关定向属性的节点进行分组。因此,我们意识到一种简单的分区方法,需要从节点中收集最小信息,并且该信息通常在长期内保持稳定,从而促进其自主权和能源效率。

Massive MIMO is a leading technology to connect very large numbers of energy constrained nodes, as it offers both extensive spatial multiplexing and large array gain. A challenge resides in partitioning the many nodes into groups that can communicate simultaneously such that the mutual interference is minimized. We here propose node partitioning strategies that do not require full channel state information, but rather are based on nodes' respective directional channel properties. In our considered scenarios, these typically have a time constant that is far larger than the coherence time of the channel. We developed both an optimal and an approximation algorithm to partition users based on directional channel properties, and evaluated them numerically. Our results show that both algorithms, despite using only these directional channel properties, achieve similar performance in terms of the minimum signal-to-interference-plus-noise ratio for any user, compared with a reference method using full channel knowledge. In particular, we demonstrate that grouping nodes with related directional properties is to be avoided. We hence realise a simple partitioning method requiring minimal information to be collected from the nodes, and where this information typically remains stable over a long term, thus promoting their autonomy and energy efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源