论文标题

通过全球指导的增强学习,在动态环境中的移动机器人路径计划

Mobile Robot Path Planning in Dynamic Environments through Globally Guided Reinforcement Learning

论文作者

Wang, Binyu, Liu, Zhe, Li, Qingbiao, Prorok, Amanda

论文摘要

大型动态环境中移动机器人的路径规划是一个具有挑战性的问题,因为需要机器人有效地达到给定的目标,同时避免与其他机器人或动态对象发生潜在的冲突。在存在动态障碍的情况下,传统解决方案通常采用重新规划的策略,这些策略会重新定位计划算法,以在机器人遇到冲突时搜索替代路径。但是,这种重新规划的策略通常会导致不必要的绕道。为了解决这个问题,我们提出了一种基于学习的技术来利用环境时空信息。与现有的基于学习的方法不同,我们引入了一种全球指导的增强学习方法(G2RL),该方法结合了一种新颖的奖励结构,该结构将其推广到任意环境。我们使用G2RL以完全分布的反应方式来解决多机器人路径计划问题。我们在不同的地图类型,障碍物密度和机器人数量上评估我们的方法。实验结果表明,G2RL可以很好地概括,表现优于现有的分布式方法,并且与完全集中的最新基准测试非常相似。

Path planning for mobile robots in large dynamic environments is a challenging problem, as the robots are required to efficiently reach their given goals while simultaneously avoiding potential conflicts with other robots or dynamic objects. In the presence of dynamic obstacles, traditional solutions usually employ re-planning strategies, which re-call a planning algorithm to search for an alternative path whenever the robot encounters a conflict. However, such re-planning strategies often cause unnecessary detours. To address this issue, we propose a learning-based technique that exploits environmental spatio-temporal information. Different from existing learning-based methods, we introduce a globally guided reinforcement learning approach (G2RL), which incorporates a novel reward structure that generalizes to arbitrary environments. We apply G2RL to solve the multi-robot path planning problem in a fully distributed reactive manner. We evaluate our method across different map types, obstacle densities, and the number of robots. Experimental results show that G2RL generalizes well, outperforming existing distributed methods, and performing very similarly to fully centralized state-of-the-art benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源