论文标题

数据驱动的算法,用于调度总和

Data-driven Algorithm for Scheduling with Total Tardiness

论文作者

Bouška, Michal, Novák, Antonín, Šůcha, Přemysl, Módos, István, Hanzálek, Zdeněk

论文摘要

在本文中,我们调查了深度学习来解决经典的NP单机调度问题,该问题是将总拖延最小化。我们没有设计端到端的机器学习模型,而是利用了该问题的众所周知的分解,并通过数据驱动的方法对其进行了增强。我们设计了一个回归器,其中包含一个深层神经网络,该网络学习并预测了一组工作的标准。该网络充当标准的多项式估计器,该估计值基于Lawler的分解定理,用于单频调度算法中。从本质上讲,回归器指导该算法为每个作业选择最佳位置。实验结果表明,我们的数据驱动方法可以有效地从训练阶段概括信息,从而实现大约0.5%的最佳差距(最多350个工作),这是最先进的NBR启发式距离的差距的四倍。

In this paper, we investigate the use of deep learning for solving a classical NP-Hard single machine scheduling problem where the criterion is to minimize the total tardiness. Instead of designing an end-to-end machine learning model, we utilize well known decomposition of the problem and we enhance it with a data-driven approach. We have designed a regressor containing a deep neural network that learns and predicts the criterion of a given set of jobs. The network acts as a polynomial-time estimator of the criterion that is used in a single-pass scheduling algorithm based on Lawler's decomposition theorem. Essentially, the regressor guides the algorithm to select the best position for each job. The experimental results show that our data-driven approach can efficiently generalize information from the training phase to significantly larger instances (up to 350 jobs) where it achieves an optimality gap of about 0.5%, which is four times less than the gap of the state-of-the-art NBR heuristic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源