论文标题
逐步表面对波辐射的数学分析
Mathematical analysis of wave radiation by a step-like surface
论文作者
论文摘要
本文提出,用于在全球扰动的半平面中传播,其首次具有完美的台阶式表面,尖锐的sommerfeld辐射条件(SRC),远场图案的分析公式以及高准确的数值求解器。我们采用Wiener-HOPF方法来计算破裂的半平面的绿色函数,这是扰动半平面的背景。我们严格地表明,绿色功能渐近地满足了通用方向的SRC(USRC),并纯粹在无穷大处散发出外向。这有助于通过线源或平面入射波引起的圆柱入射波提出散射波的隐式透明边界条件。然后,通过相关的变异表述建立了良好的理论。该理论表明,散布的波浪后,提取后的波浪场满足了相同的USRC,因此从理论上可以访问其远场模式。对于平面波发生率,渐近分析表明,由于无穷大的阶梯状表面的不均匀高度从各个区域中的散射波中减去反射的平面波,也会产生不连续的波浪,使USRC满足。从数值上讲,我们采用了先前开发的完美匹配的层(PML)边界融合 - 方程方法来解决问题。数值结果表明,随着PML的厚度或吸收功率的增加,PML截断误差逐渐快速衰减,其收敛性在很大程度上依赖于PML中的绿色函数指数衰减。
This paper proposes, for wave propagating in a globally perturbed half plane with a perfectly conducting step-like surface, a sharp Sommerfeld radiation condition (SRC) for the first time, an analytic formula of the far-field pattern, and a high-accuracy numerical solver. We adopt the Wiener-Hopf method to compute the Green function for a cracked half plane, a background for the perturbed half plane. We rigorously show that the Green function asymptotically satisfies a universal-direction SRC (uSRC) and radiates purely outgoing at infinity. This helps to propose an implicit transparent boundary condition for the scattered wave, by either a cylindrical incident wave due to a line source or a plane incident wave. Then, a well-posedness theory is established via an associated variational formulation. The theory reveals that the scattered wave, post-subtracting a known wave field, satisfies the same uSRC so that its far-field pattern is accessible theoretically. For a plane-wave incidence, asymptotic analysis shows that merely subtracting reflected plane waves, due to non-uniform heights of the step-like surface at infinity, from the scattered wave in respective regions produces a discontinuous wave satisfying the uSRC as well. Numerically, we adopt a previously developed perfectly-matched-layer (PML) boundary-integral-equation method to solve the problem. Numerical results demonstrate that the PML truncation error decays exponentially fast as thickness or absorbing power of the PML increases, of which the convergence relies heavily on the Green function exponentially decaying in the PML.