论文标题

蒙特卡洛地区生长的概率语义分割细化

Probabilistic Semantic Segmentation Refinement by Monte Carlo Region Growing

论文作者

Dias, Philipe A., Medeiros, Henry

论文摘要

具有细粒像素级准确性的语义分割是各种计算机视觉应用的基本组成部分。但是,尽管卷积神经网络架构的最新进展提供了很大的改进,但现代最先进方法提供的分割仍然显示出有限的边界粘附。我们引入了一种完全无监督的后处理算法,该算法利用了蒙特卡洛采样和像素相似性,以将高信任像素标签传播到低信心分类的区域。我们称之为概率区域增长(PRGR)的算法基于严格的数学基础,在该基础中,将簇建模为多元正态分布的像素的多元分布集。 PRGR利用贝叶斯估计和差异降低技术的概念在不同的接受场大小上执行多次改进迭代,同时更新群集统计信息以适应本地图像特征。使用多个现代语义分割网络和基准数据集使用的实验证明了我们方法在不同水平的粗糙水平上进行分割预测的改进,以及在蒙特卡洛迭代中获得的方差估计值的适用性,作为与分裂精度高度相关的不确定度度量。

Semantic segmentation with fine-grained pixel-level accuracy is a fundamental component of a variety of computer vision applications. However, despite the large improvements provided by recent advances in the architectures of convolutional neural networks, segmentations provided by modern state-of-the-art methods still show limited boundary adherence. We introduce a fully unsupervised post-processing algorithm that exploits Monte Carlo sampling and pixel similarities to propagate high-confidence pixel labels into regions of low-confidence classification. Our algorithm, which we call probabilistic Region Growing Refinement (pRGR), is based on a rigorous mathematical foundation in which clusters are modelled as multivariate normally distributed sets of pixels. Exploiting concepts of Bayesian estimation and variance reduction techniques, pRGR performs multiple refinement iterations at varied receptive fields sizes, while updating cluster statistics to adapt to local image features. Experiments using multiple modern semantic segmentation networks and benchmark datasets demonstrate the effectiveness of our approach for the refinement of segmentation predictions at different levels of coarseness, as well as the suitability of the variance estimates obtained in the Monte Carlo iterations as uncertainty measures that are highly correlated with segmentation accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源