论文标题

实验性的全场分析,对微型细胞弹性材料超材料中的尺寸效应分析

Experimental Full-field Analysis of Size Effects in Miniaturized Cellular Elastomeric Metamaterials

论文作者

Maraghechi, S., Hoefnagels, J. P. M., Peerlings, R. H. J., Rokoš, O., Geers, M. G. D.

论文摘要

细胞弹性超材料对于各种应用很有趣,例如软机器人技术可能表现出多种微结构模式转换,每种都具有特征性的机械行为。数值文献研究表明,模式形成受到(厚)边界层的限制,从而导致显着的机械尺寸效应。本文旨在实验验证这些发现在微型样本,与实际应用相关的情况下,并研究标本小型化导致的几何和物质缺陷的效果。为此,微型细胞超材料标本的制造具有不同的比例比,经过原位的微压测试,结合了数字图像相关性产生全场运动学,并与互补的数值模拟进行了比较。标本的全球行为与数值预测非常吻合,就弯曲前的刚度,屈曲菌株和弯曲后压力而言。它们的局部行为,即模式转换和边界层形成,在实验和模拟之间也是一致的。这些结果与文献的理想数值研究的比较揭示了边界条件在实际细胞超材料应用中的影响,例如横向限制,关于尺寸效应和边界层形成的机械响应。

Cellular elastomeric metamaterials are interesting for various applications, e.g. soft robotics, as they may exhibit multiple microstructural pattern transformations, each with its characteristic mechanical behavior. Numerical literature studies revealed that pattern formation is restricted in (thick) boundary layers causing significant mechanical size effects. This paper aims to experimentally validate these findings on miniaturized specimens, relevant for real applications, and to investigate the effect of increased geometrical and material imperfections resulting from specimen miniaturization. To this end, miniaturized cellular metamaterial specimens are manufactured with different scale ratios, subjected to in-situ micro-compression tests combined with digital image correlation yielding full-field kinematics, and compared to complementary numerical simulations. The specimens' global behavior agrees well with the numerical predictions, in terms of pre-buckling stiffness, buckling strain and post-buckling stress. Their local behavior, i.e. pattern transformation and boundary layer formation, is also consistent between experiments and simulations. Comparison of these results with idealized numerical studies from literature reveals the influence of the boundary conditions in real cellular metamaterial applications, e.g. lateral confinement, on the mechanical response in terms of size effects and boundary layer formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源