论文标题

强渐近组成定理用于相互信息测量

Strong Asymptotic Composition Theorems for Mutual Information Measures

论文作者

Wu, Benjamin, Wagner, Aaron B., Issa, Ibrahim, Suh, G. Edward

论文摘要

我们表征了Sibson和Arimoto相互信息的增长以及$α$ - 最大的泄漏,即至少是统一的秩序,在随机变量和一组不断增长的嘈杂,有条件独立且相同分布的随机变量的观察结果之间。这些度量中的每一个都将指数迅速增加到订单和度量依赖性的极限,其指数是订单和量度无关的。

We characterize the growth of the Sibson and Arimoto mutual informations and $α$-maximal leakage, of any order that is at least unity, between a random variable and a growing set of noisy, conditionally independent and identically-distributed observations of the random variable. Each of these measures increases exponentially fast to a limit that is order- and measure-dependent, with an exponent that is order- and measure-independent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源