论文标题

无线通信的深度学习

Deep Learning for Wireless Communications

论文作者

Erpek, Tugba, O'Shea, Timothy J., Sagduyu, Yalin E., Shi, Yi, Clancy, T. Charles

论文摘要

现有的通信系统在处理具有高度自由度的新兴无线应用的优化复杂性时,在将理论转化为实践时表现出固有的局限性。深度学习具有通过数据驱动的解决方案克服这一挑战的强大潜力,并提高了无线系统在利用有限的频谱资源方面的性能。在本章中,我们首先描述了如何使用自动编码器来设计端到端通信系统。这种灵活的设计有效地捕获了通道障碍,并优化了在单 - 安特纳(Single-Antenna),多触角和多源通信中共同优化发射机和接收器操作。接下来,我们介绍频谱状况意识中深度学习的好处,从渠道建模和估计到信号检测和分类任务。当基于模型的方法失败时,深度学习会改善性能。最后,我们讨论深度学习如何应用于无线通信安全性。在这种情况下,对抗机器学习提供了发射和防御无线攻击的新颖手段。这些应用程序展示了深度学习在提供新颖的手段以设计,优化,适应和安全的无线通信方面的力量。

Existing communication systems exhibit inherent limitations in translating theory to practice when handling the complexity of optimization for emerging wireless applications with high degrees of freedom. Deep learning has a strong potential to overcome this challenge via data-driven solutions and improve the performance of wireless systems in utilizing limited spectrum resources. In this chapter, we first describe how deep learning is used to design an end-to-end communication system using autoencoders. This flexible design effectively captures channel impairments and optimizes transmitter and receiver operations jointly in single-antenna, multiple-antenna, and multiuser communications. Next, we present the benefits of deep learning in spectrum situation awareness ranging from channel modeling and estimation to signal detection and classification tasks. Deep learning improves the performance when the model-based methods fail. Finally, we discuss how deep learning applies to wireless communication security. In this context, adversarial machine learning provides novel means to launch and defend against wireless attacks. These applications demonstrate the power of deep learning in providing novel means to design, optimize, adapt, and secure wireless communications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源