论文标题

坚固地学习高斯人的任何可簇的混合物

Robustly Learning any Clusterable Mixture of Gaussians

论文作者

Diakonikolas, Ilias, Hopkins, Samuel B., Kane, Daniel, Karmalkar, Sushrut

论文摘要

我们研究了在异常型环境中高维高斯混合物的有效学习性,其中少数恒定的数据是对抗性损坏的。当组件以总变化距离成对分离时,我们可以解决此问题的多项式可学习性。具体而言,我们提供了一种算法,对于任何恒定数量的组件$ k $,在多项式时间内运行,并学习了$ε$ -CRURTUPT $ K $ -MIXTURE的组件,从理论上讲,信息在$ \ tilde {o}(O}(O}(ε)$的情况下,从理论上讲,信息从理论上讲几乎是$ \ tillap的$ p。 (即,数量$ 1-TV(p_i,p_j)$)由$ \ mathrm {poly}(ε)$限制。 我们的分离条件是质性上最弱的假设,在该假设中,样品的准确聚类是可能的。特别是,只要它们的协方差足够差异,它允许具有任意协方差的组成部分和具有相同手段的组成部分。我们的问题是此问题的第一个多项式时间算法,即使是$ k = 2 $。 我们的算法遵循基于方格的算法方法的证明。我们的主要技术贡献是从高斯混合物中的簇的新的可识别性证明,可以通过恒定的平方防护系统来捕获。该证明的关键要素是对SOS可认证的抗浓度的新颖使用,以及对具有小(无限制)与参数距离重叠的高斯人对的新表征。

We study the efficient learnability of high-dimensional Gaussian mixtures in the outlier-robust setting, where a small constant fraction of the data is adversarially corrupted. We resolve the polynomial learnability of this problem when the components are pairwise separated in total variation distance. Specifically, we provide an algorithm that, for any constant number of components $k$, runs in polynomial time and learns the components of an $ε$-corrupted $k$-mixture within information theoretically near-optimal error of $\tilde{O}(ε)$, under the assumption that the overlap between any pair of components $P_i, P_j$ (i.e., the quantity $1-TV(P_i, P_j)$) is bounded by $\mathrm{poly}(ε)$. Our separation condition is the qualitatively weakest assumption under which accurate clustering of the samples is possible. In particular, it allows for components with arbitrary covariances and for components with identical means, as long as their covariances differ sufficiently. Ours is the first polynomial time algorithm for this problem, even for $k=2$. Our algorithm follows the Sum-of-Squares based proofs to algorithms approach. Our main technical contribution is a new robust identifiability proof of clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system. The key ingredients of this proof are a novel use of SoS-certifiable anti-concentration and a new characterization of pairs of Gaussians with small (dimension-independent) overlap in terms of their parameter distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源