论文标题
使用高斯工艺和拖把的弱透镜的参数推断
Parameter Inference for Weak Lensing using Gaussian Processes and MOPED
论文作者
论文摘要
在本文中,我们提出了一个高斯工艺(GP)模拟器,以计算a)层析成像弱透镜带功能光谱,b)摘要数据的系数通过摩托车算法大规模压缩。在前一种情况下,与向Boltzmann Solver类的明确调用相比,宇宙学参数推断的加速度为$ \ sim 10 $ - $ 30 $。将来的数据将带来更大的收益,在使用拖把压缩的情况下,当使用常见的liger近似值时,速度可以达到$ \ sim 10^3 $。此外,GP开辟了降低肢体近似的可能性,没有该近似值,理论计算可能会慢慢慢。 GPS的潜在优势是可以计算模拟函数的误差,并将这种不确定性纳入可能性。如果速度是本质的,则可以使用高斯过程的平均值,并且不确定性忽略了。我们计算模拟器的可能性和类可能性之间的kullback-leibler差异,并在此基础上,通过分析参数的不确定性,我们发现在这种情况下,GP不确定性的包含并不能够证明测试应用程序中的特级计算费用是合理的。对于未来的弱镜头调查,例如欧几里得和空间和望远镜的传统调查(LSST),摘要统计数据的数量将很大,最高可达$ \ sim 10^{4} $。摩托车的速度取决于参数的数量,而不是摘要数据的数量,因此收益非常大。在非列表情况下,加速可能是$ \ sim 10^5 $的因素,前提是可以使用一种快速计算理论拖把系数的方法。此处介绍的GP提供了如此快速的机制,并可以使用拖把。
In this paper, we propose a Gaussian Process (GP) emulator for the calculation of a) tomographic weak lensing band-power spectra, and b) coefficients of summary data massively compressed with the MOPED algorithm. In the former case cosmological parameter inference is accelerated by a factor of $\sim 10$-$30$ compared to explicit calls to the Boltzmann solver CLASS when applied to KiDS-450 weak lensing data. Much larger gains will come with future data, where with MOPED compression, the speed up can be up to a factor of $\sim 10^3$ when the common Limber approximation is used. Furthermore, the GP opens up the possibility of dropping the Limber approximation, without which the theoretical calculations may be unfeasibly slow. A potential advantage of GPs is that an error on the emulated function can be computed and this uncertainty incorporated into the likelihood. If speed is of the essence, then the mean of the Gaussian Process can be used and the uncertainty ignored. We compute the Kullback-Leibler divergence between the emulator likelihood and the CLASS likelihood, and on the basis of this and from analysing the uncertainties on the parameters, we find that in this case, the inclusion of the GP uncertainty does not justify the extra computational expense in the test application. For future weak lensing surveys such as Euclid and Legacy Survey of Space and Telescope (LSST), the number of summary statistics will be large, up to $\sim 10^{4}$. The speed of MOPED is determined by the number of parameters, not the number of summary data, so the gains are very large. In the non-Limber case, the speed-up can be a factor of $\sim 10^5$, provided that a fast way to compute the theoretical MOPED coefficients is available. The GP presented here provides such a fast mechanism and enables MOPED to be employed.