论文标题

替代辅助辅助小偷问题的优化

Surrogate Assisted Optimisation for Travelling Thief Problems

论文作者

Namazi, Majid, Sanderson, Conrad, Newton, M. A. Hakim, Sattar, Abdul

论文摘要

旅行小偷问题(TTP)是一个多组分优化问题,涉及两个相互依存的NP-HARD组件:旅行推销员问题(TSP)和Knapsack问题(KP)。最新的最先进的TTP求解器以迭代和交织的方式修改了基础TSP和KP解决方案。通常以确定性的方式更改TSP解决方案(环状图),而KP解决方案的更改通常涉及随机搜索,有效地导致了对TTP解决方案空间的准弥补探索。一旦达到高原,使用新的初始TSP游览重新启动了TTP解决方案空间的迭代搜索。我们建议通过自适应替代模型(基于自定义的支持向量回归形式)来提高搜索效率,该模型了解了最初的TSP Tours的特征,从而导致了良好的TTP解决方案。该模型用于滤除非主张的初始TSP旅行,实际上减少了寻找良好TTP解决方案所花费的时间。在广泛的基准TTP实例上进行的实验表明,所提出的方法过滤了大量非宣布的初始旅行,而仅省略了少数最佳TTP解决方案。

The travelling thief problem (TTP) is a multi-component optimisation problem involving two interdependent NP-hard components: the travelling salesman problem (TSP) and the knapsack problem (KP). Recent state-of-the-art TTP solvers modify the underlying TSP and KP solutions in an iterative and interleaved fashion. The TSP solution (cyclic tour) is typically changed in a deterministic way, while changes to the KP solution typically involve a random search, effectively resulting in a quasi-meandering exploration of the TTP solution space. Once a plateau is reached, the iterative search of the TTP solution space is restarted by using a new initial TSP tour. We propose to make the search more efficient through an adaptive surrogate model (based on a customised form of Support Vector Regression) that learns the characteristics of initial TSP tours that lead to good TTP solutions. The model is used to filter out non-promising initial TSP tours, in effect reducing the amount of time spent to find a good TTP solution. Experiments on a broad range of benchmark TTP instances indicate that the proposed approach filters out a considerable number of non-promising initial tours, at the cost of omitting only a small number of the best TTP solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源