论文标题

辛普森(Covid-19

Simpson's paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effects

论文作者

von Kügelgen, Julius, Gresele, Luigi, Schölkopf, Bernhard

论文摘要

我们指出了辛普森在19 Covid-19案件死亡率(CFRS)中的悖论的实例化:比较中国(2月17日)的一项大规模研究与意大利(9月9日)的早期报道,我们发现每个年龄段的意大利CFR都较低,但总体上更高。这一现象是通过两国之间的案例人口统计的明显差异来解释的。以此为例,我们从中介分析中介绍了基本概念,并在假设涉及国家,年龄和病例死亡的粗粒物质图时,可以使用这些概念来量化不同的直接和间接效应。我们策划了一个具有> 750K病例的年龄分层的CFR数据集,并进行了案例研究,研究了不同国家和不同国家之间的总体,直接和间接(年龄介导的)因果关系。这使我们能够将与年龄相关的效应与与年龄无关的其他人分开,并促进了COVID-19 COVID-19大流行阶段的CFR的更透明的比较。使用来自意大利的纵向数据,我们发现了3月中旬的直接因果效应的迹象,这与该国部分地区的医疗保健系统的崩溃时间一致。此外,我们发现132对国家的直接和间接影响只有微弱的相关性,这表明一个国家的政策和案件人口可能很大程度上是无关的。我们指出了未来工作的局限性和扩展,最后,讨论了因果推理在使用AI来对抗Covid-19-19大流行的更广泛背景下的作用。

We point out an instantiation of Simpson's paradox in Covid-19 case fatality rates (CFRs): comparing a large-scale study from China (17 Feb) with early reports from Italy (9 Mar), we find that CFRs are lower in Italy for every age group, but higher overall. This phenomenon is explained by a stark difference in case demographic between the two countries. Using this as a motivating example, we introduce basic concepts from mediation analysis and show how these can be used to quantify different direct and indirect effects when assuming a coarse-grained causal graph involving country, age, and case fatality. We curate an age-stratified CFR dataset with >750k cases and conduct a case study, investigating total, direct, and indirect (age-mediated) causal effects between different countries and at different points in time. This allows us to separate age-related effects from others unrelated to age and facilitates a more transparent comparison of CFRs across countries at different stages of the Covid-19 pandemic. Using longitudinal data from Italy, we discover a sign reversal of the direct causal effect in mid-March which temporally aligns with the reported collapse of the healthcare system in parts of the country. Moreover, we find that direct and indirect effects across 132 pairs of countries are only weakly correlated, suggesting that a country's policy and case demographic may be largely unrelated. We point out limitations and extensions for future work, and, finally, discuss the role of causal reasoning in the broader context of using AI to combat the Covid-19 pandemic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源