论文标题
迈向5G:视频段缓存的联合优化,在muti-access边缘计算网络中进行自适应视频流的转码和资源分配
Towards 5G: Joint Optimization of Video Segment Cache, Transcoding and Resource Allocation for Adaptive Video Streaming in a Muti-access Edge Computing Network
论文作者
论文摘要
ENODEB中多访问边缘计算(MEC)服务器(MEC)服务器和无线资源分配的缓存和转码相互作用,并确定MEC网络中HTTP(DASH)客户端的动态自适应流的体验质量(QOE)。但是,尚未探索这三个因素之间的关系,这导致客户QoE的改善有限。因此,我们提出了视频段缓存的联合优化框架和在MEC服务器中进行转编码以及资源分配,以改善DASH客户端的Qoe。基于已建立的框架,我们开发了由MEC缓存分区,视频段删除和MEC缓存空间传输组成的MEC缓存管理机制。然后,提出了一种结合视频段缓存和转码在MEC服务器和资源分配中的联合优化算法。在算法中,使用客户端的频道状态以及MEC服务器之间的播放状态和合作来估算客户的优先级,视频段演示开关和连续的播放时间。考虑到以上四个因素,我们开发了客户QOE的效用函数模型。然后,我们制定了一个混合企业非线性编程数学模型,以最大程度地提高DASH客户端的总实用性,在此段,视频段缓存以及转码策略和资源分配策略是共同优化的。为了解决这个问题,我们提出了一种低复杂性启发式算法,将原始问题分解为多个子问题。仿真结果表明,我们提出的算法有效地改善了客户的吞吐量,接收到视频片段的视频质量和命中率,同时减少了播放式拒绝时间,视频段演示开关和系统回程流量。
The cache and transcoding of the multi-access edge computing (MEC) server and wireless resource allocation in eNodeB interact and determine the quality of experience (QoE) of dynamic adaptive streaming over HTTP (DASH) clients in MEC networks. However, the relationship among the three factors has not been explored, which has led to limited improvement in clients' QoE. Therefore, we propose a joint optimization framework of video segment cache and transcoding in MEC servers and resource allocation to improve the QoE of DASH clients. Based on the established framework, we develop a MEC cache management mechanism that consists of the MEC cache partition, video segment deletion, and MEC cache space transfer. Then, a joint optimization algorithm that combines video segment cache and transcoding in the MEC server and resource allocation is proposed. In the algorithm, the clients' channel state and the playback status and cooperation among MEC servers are employed to estimate the client's priority, video segment presentation switch and continuous playback time. Considering the above four factors, we develop a utility function model of clients' QoE. Then, we formulate a mixed-integer nonlinear programming mathematical model to maximize the total utility of DASH clients, where the video segment cache and transcoding strategy and resource allocation strategy are jointly optimized. To solve this problem, we propose a low-complexity heuristic algorithm that decomposes the original problem into multiple subproblems. The simulation results show that our proposed algorithms efficiently improve client's throughput, received video quality and hit ratio of video segments while decreasing the playback rebuffering time, video segment presentation switch and system backhaul traffic.