论文标题
用软掩盖的伯特纠正拼写错误
Spelling Error Correction with Soft-Masked BERT
论文作者
论文摘要
拼写误差校正是一项重要但具有挑战性的任务,因为它令人满意的解决方案本质上需要人级的语言理解能力。在本文中,我们考虑了中文拼写误差校正(CSC)。该任务的最先进方法是根据语言表示模型Bert(伯特(Bert))在句子的每个位置中从校正列表中选择一个字符(包括非纠正)。但是,该方法的准确性可以是最佳的,因为BERT没有足够的能力来检测每个位置是否存在错误,这显然是由于使用蒙版语言建模进行预训练的方式。在这项工作中,我们提出了一种新型的神经体系结构来解决上述问题,该问题由一个用于错误检测的网络和基于BERT的错误校正网络组成,而前者则与我们所说的软罩技术连接到后者。我们使用“软掩盖的伯特”的方法是一般的,并且可以在其他语言检测校正问题中使用。两个数据集上的实验结果表明,我们提出的方法的性能明显优于基准,包括仅基于BERT的基准。
Spelling error correction is an important yet challenging task because a satisfactory solution of it essentially needs human-level language understanding ability. Without loss of generality we consider Chinese spelling error correction (CSC) in this paper. A state-of-the-art method for the task selects a character from a list of candidates for correction (including non-correction) at each position of the sentence on the basis of BERT, the language representation model. The accuracy of the method can be sub-optimal, however, because BERT does not have sufficient capability to detect whether there is an error at each position, apparently due to the way of pre-training it using mask language modeling. In this work, we propose a novel neural architecture to address the aforementioned issue, which consists of a network for error detection and a network for error correction based on BERT, with the former being connected to the latter with what we call soft-masking technique. Our method of using `Soft-Masked BERT' is general, and it may be employed in other language detection-correction problems. Experimental results on two datasets demonstrate that the performance of our proposed method is significantly better than the baselines including the one solely based on BERT.