论文标题

渐近圆锥形更高的跨跨越自我碎片和自我膨胀者的唯一性

Uniqueness of Asymptotically Conical Higher Codimension Self-Shrinkers and Self-Expanders

论文作者

Khan, Ilyas

论文摘要

令$ c $为$ m $ dimensional锥体沉浸在$ \ mathbb {r}^{n+m} $中。在本文中,我们表明,如果$ f:m^m \ rightarrow \ mathbb {r}^{n+m} $是一种适当沉浸式沉浸式平均曲率自我冲突器,它是顺利地渐近到$ c $的,那么它是唯一的,并且与单位倍增为$ c $。此外,如果$ f_1 $和$ f_2 $是自我膨胀的人,它们都会顺畅地散布到$ c $,它们的分离速度快于$ρ^{ - m-1} e^{ - ρ^2/4} $,在hausdorff计量中,然后$ f_1 $ f_1 $和$ f_2 $ coinciess $ f_1 $ f_2 $ cosins co。

Let $C$ be an $m$-dimensional cone immersed in $\mathbb{R}^{n+m}$. In this paper, we show that if $F:M^m \rightarrow \mathbb{R}^{n+m}$ is a properly immersed mean curvature flow self-shrinker which is smoothly asymptotic to $C$, then it is unique and converges to $C$ with unit multiplicity. Furthermore, if $F_1$ and $F_2$ are self-expanders that both converge to $C$ smoothly asymptotically and their separation decreases faster than $ρ^{-m-1}e^{-ρ^2/4}$ in the Hausdorff metric, then the images of $F_1$ and $F_2$ coincide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源