论文标题

学习重力法和其他分析功能

Learning the gravitational force law and other analytic functions

论文作者

Agarwala, Atish, Das, Abhimanyu, Panigrahy, Rina, Zhang, Qiuyi

论文摘要

大型神经网络模型已成功地学习了许多科学分支,包括物理,化学和生物学的重要性。最近的理论工作显示了一些简单类别的函数类别的宽网络和内核方法的明确学习界,但在实践中出现的更复杂的功能上没有。我们扩展了这些技术,以提供任何内核方法或等效无限范围网络在球体上的分析功能的学习界限,并具有相应的激活函数,该函数接受了SGD的训练。我们表明,一个宽阔的一个隐藏层relu网络可以通过与相关功能的衍生品成正比的多个样本学习分析功能。因此,在科学中重要的许多功能都是有效地学习的。例如,我们证明了学习牛顿重力定律给出的多体引力函数的明确界限。我们的理论界限表明,与使用高斯内核的内核学习相比,非常广泛的Relu网络(以及相应的NTK内核)在学习分析功能方面更好。我们提供了实验证据,表明与具有指数激活的网络相比,使用RELU网络的多体重力功能更容易学习。

Large neural network models have been successful in learning functions of importance in many branches of science, including physics, chemistry and biology. Recent theoretical work has shown explicit learning bounds for wide networks and kernel methods on some simple classes of functions, but not on more complex functions which arise in practice. We extend these techniques to provide learning bounds for analytic functions on the sphere for any kernel method or equivalent infinitely-wide network with the corresponding activation function trained with SGD. We show that a wide, one-hidden layer ReLU network can learn analytic functions with a number of samples proportional to the derivative of a related function. Many functions important in the sciences are therefore efficiently learnable. As an example, we prove explicit bounds on learning the many-body gravitational force function given by Newton's law of gravitation. Our theoretical bounds suggest that very wide ReLU networks (and the corresponding NTK kernel) are better at learning analytic functions as compared to kernel learning with Gaussian kernels. We present experimental evidence that the many-body gravitational force function is easier to learn with ReLU networks as compared to networks with exponential activations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源