论文标题
通过在MHD湍流中重新连接大规模磁场的扩散
Diffusion of large-scale magnetic fields by reconnection in MHD turbulence
论文作者
论文摘要
磁场扩散速率在几个天体物理等离子体过程中起着至关重要的作用。已经证明,天体物理介质中的无所不在的湍流会引起快速的磁重新连接,因此,这会导致与血浆微物理学无关的速率以大规模的磁通量扩散。此过程称为``重新连接扩散'(RD)(RD),并允许动态重要的字段扩散。描述RD的当前理论基于不可压缩的磁流失动力(MHD)湍流。在这项工作中,当磁力在湍流动力学中占主导地位时,我们对RD理论的预测进行了定量测试(alfvénic马赫数$ m_a <1 $)。我们使用\ textsc {铅笔代码}来执行强制MHD湍流的数值模拟,使用测试点方法提取扩散系数$η_{rd} $的值。我们的结果与RD理论($η_{rd} \ sim m_a^{3} $ for $ m_a <1 $)时,当湍流接近不可压缩的极限(Sonic Mach Number $ m_s \ m_s \ lyssim 0.02 $),而对于较大的$ m_s $,较大的$ m_s $ figfusion nie diffusion in the diffusion fivest($η_} $ phaster($η_pan}^sim^sim {rd {rd}这项工作首次显示了可压缩的MHD湍流的模拟,并在平行于平均磁场的方向上抑制了级联反应,这与不可压缩的弱湍流理论一致。我们还验证了在我们的模拟中,与RD理论假设相矛盾,能量级联的时间不会以$ M_A $预测的$ M_A $遵循缩放时间。我们的结果通常支持和扩展RD理论的预测。
The rate of magnetic field diffusion plays an essential role in several astrophysical plasma processes. It has been demonstrated that the omnipresent turbulence in astrophysical media induces fast magnetic reconnection, which consequently leads to large-scale magnetic flux diffusion at a rate independent of the plasma microphysics. This process is called ``reconnection diffusion'' (RD) and allows for the diffusion of fields which are dynamically important. The current theory describing RD is based on incompressible magnetohydrodynamic (MHD) turbulence. In this work, we have tested quantitatively the predictions of the RD theory when magnetic forces are dominant in the turbulence dynamics (Alfvénic Mach number $M_A < 1$). We employed the \textsc{Pencil Code} to perform numerical simulations of forced MHD turbulence, extracting the values of the diffusion coefficient $η_{RD}$ using the Test-Field method. Our results are consistent with the RD theory ($η_{RD} \sim M_A^{3}$ for $M_A < 1$) when turbulence approaches the incompressible limit (sonic Mach number $M_S \lesssim 0.02$), while for larger $M_S$ the diffusion is faster ($η_{RD} \sim M_A^{2}$). This work shows for the first time simulations of compressible MHD turbulence with the suppression of the cascade in the direction parallel to the mean magnetic field, which is consistent with incompressible weak turbulence theory. We also verified that in our simulations the energy cascading time does not follow the scaling with $M_A$ predicted for the weak regime, in contradiction with the RD theory assumption. Our results generally support and expand the RD theory predictions.