论文标题

一般$ D $ - 位置集

General $d$-position sets

论文作者

Klavzar, Sandi, Rall, Douglas F., Yero, Ismael G.

论文摘要

图$ g $的一般$ d $ - 位数$ {\ rm gp} _d(g)$是最大的集合$ s $的基数,对于最多的$ d $,$ s $的三个不同的顶点都不是$ s $。该新图参数概括了所研究的一般位置编号。我们首先给出一些有关$ d $的合适值的$ {\ rm gp} _d(g)$的单调行为的结果。我们表明,有关查找$ {\ rm gp} _d(g)$的决策问题对于任何值的$ d $而言都是NP complete。 $ {\ rm gp} _d(g)$的值当$ g $是一条路径或计算周期时,显示了一般$ d $ - 位置集的结构表征。此外,我们与其他主题提出了一些关系,包括强大的解决图和解离集。我们通过证明$ {\ rm gp} _d(g)$是无限的,只要$ g $是无限的图表,而$ d $是有限的整数,我们就可以完成论述。

The general $d$-position number ${\rm gp}_d(G)$ of a graph $G$ is the cardinality of a largest set $S$ for which no three distinct vertices from $S$ lie on a common geodesic of length at most $d$. This new graph parameter generalizes the well studied general position number. We first give some results concerning the monotonic behavior of ${\rm gp}_d(G)$ with respect to the suitable values of $d$. We show that the decision problem concerning finding ${\rm gp}_d(G)$ is NP-complete for any value of $d$. The value of ${\rm gp}_d(G)$ when $G$ is a path or a cycle is computed and a structural characterization of general $d$-position sets is shown. Moreover, we present some relationships with other topics including strong resolving graphs and dissociation sets. We finish our exposition by proving that ${\rm gp}_d(G)$ is infinite whenever $G$ is an infinite graph and $d$ is a finite integer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源