论文标题
基于光谱块稀疏建模的高光谱图像分类
Hyperspectral Image Classification Based on Sparse Modeling of Spectral Blocks
论文作者
论文摘要
高光谱图像提供了丰富的空间和光谱信息,对于实践科学领域的物质检测非常有价值。数据的高度量导致许多处理挑战,这些挑战可以通过存在的空间和光谱冗余来解决。在本文中,为高光谱图像分类提出了一个稀疏的建模框架。引入光谱块与空间组一起使用,以共同利用光谱和空间冗余。为了降低稀疏建模的计算复杂性,光谱块用于将高维优化问题分解为更快地解决的小型亚问题。此外,提出的稀疏结构使得可以提取最歧视的光谱块并进一步减轻计算负担。在三个基准数据集(即帕维亚大学的图像和印度松树图像)上进行的实验证明了所提出的方法是否会导致高光谱图像的强大稀疏建模,并提高了与几种最新方法相比的分类精度。此外,实验表明所提出的方法需要更少的处理时间。
Hyperspectral images provide abundant spatial and spectral information that is very valuable for material detection in diverse areas of practical science. The high-dimensions of data lead to many processing challenges that can be addressed via existent spatial and spectral redundancies. In this paper, a sparse modeling framework is proposed for hyperspectral image classification. Spectral blocks are introduced to be used along with spatial groups to jointly exploit spectral and spatial redundancies. To reduce the computational complexity of sparse modeling, spectral blocks are used to break the high-dimensional optimization problems into small-size sub-problems that are faster to solve. Furthermore, the proposed sparse structure enables to extract the most discriminative spectral blocks and further reduce the computational burden. Experiments on three benchmark datasets, i.e., Pavia University Image and Indian Pines Image verify that the proposed method leads to a robust sparse modeling of hyperspectral images and improves the classification accuracy compared to several state-of-the-art methods. Moreover, the experiments demonstrate that the proposed method requires less processing time.