论文标题

片段分子轨道方法结合分子力学的第一和第二个衍生物

Analytic First and Second Derivatives for the Fragment Molecular Orbital Method Combined with Molecular Mechanics

论文作者

Nakata, Hiroya, Fedorov, Dmitri G.

论文摘要

在Hartree-Fock和密度功能理论水平上,在静电嵌入方案中与分子力学连接的片段分子轨道方法开发了分析的第一和第二个衍生物。证明了轨道响应术语的重要性。分析了静电嵌入在分子振动上的作用,比较了离子液体和溶剂化蛋白的力场和量子力学处理。该方法适用于在MD中采样的100种蛋白质构象,以考虑溶液中柔性蛋白结构的复杂性,并获得了实验数据的良好一致性:从实验性IR光谱中频率在17 cm $ $^{ - 1} $内复制。

Analytic first and second derivatives of the energy are developed for the fragment molecular orbital method interfaced with molecular mechanics in the electrostatic embedding scheme at the level of Hartree-Fock and density functional theory. The importance of the orbital response terms is demonstrated. The role of the electrostatic embedding upon molecular vibrations is analyzed, comparing force field and quantum-mechanical treatments for an ionic liquid and a solvated protein. The method is applied for 100 protein conformations sampled in MD to take into account the complexity of a flexible protein structure in solution, and a good agreement to experimental data is obtained: frequencies from an experimental IR spectrum are reproduced within 17 cm$^{-1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源