论文标题
二次gröbner的聚元理想的原理
Primality of polyomino ideals by quadratic Gröbner basis
论文作者
论文摘要
在这项工作中,由于多支克本身的组合特性,我们在多支着的多支着的多支着的多支着的多支克斯提供了必要且充分的条件。此外,我们证明,当后者保持理想与与多莫诺相关的晶格的理想相吻合时,理想就是素数。作为一种应用,我们描述了两个新的主要多支粉的新无限家族。
In this work, we provide a necessary and sufficient condition on a polyomino ideal for having the set of inner 2-minors as degree reverse lexicographic Gröbner basis, due to combinatorial properties of the polyomino itself. Moreover, we prove that when the latter holds the ideal coincides with the lattice ideal associated to the polyomino, that is the ideal is prime. As an application, we describe two new infinite families of prime polyominoes.